
runit and ignite:
a suckless init system?

Christian Neukirchen
chneukirchen@gmail.com

slcon 2013 · 22jun2013
1

Motivation

Since mid-2012, there has been a strong drive by many Linux
distributions towards replacing old sysvinit with newer systems
such as upstart (Ubuntu), openRC (Gentoo) and systemd
(everything else).

While these implement some long wished-for features, they
also add lots of complexity, often in the wrong places.

When Arch Linux decided to move towards systemd, I had to
pull the communication cord…

2

What init(8) must do:

• Be pid 1.

• Reap children (handle SIGCHLD).

• Run something to bring up the rest of the system.

• Don’t crash. Ever.

Everything else probably does not belong into pid 1.

3

What an init system should do:

• Configure the system according to some files or boot flags.

• Allow to start and stop services.

4

Service supervision

When we want a service to run, it should run.

When we want a service to stop, it should be stopped.

How can we know a service is running? sysvinit (and badly
written systemd descriptions) use pid files, and check if the pid
is still running, or kill it.

This is inherently racy. The pid can get invalidated and
reassigned at any time.

5

Service supervision

The only way to reliably run a service is to be its parent process.
(You then get the pid from fork(2).)

This also means dæmonization is a waste of time.

6

runsv(8)

runit provides runsv(8), which starts and monitors a single ser-
vice.

runsv switches to the directory service and starts
./run. If ./run exits and ./finish exists, runsv
starts ./finish. If ./finish doesn’t exist or
./finish exits, runsv restarts ./run.

If ./run or ./finish exit immediately, runsv waits
a second before starting ./finish or restarting
./run.

7

sv(8)

runit provides a tool sv(8)to talk to a running runsv:

• sv status

• sv up

• sv down

• sv pause/cont/hup/alarm/interrupt/quit/1/2/term/kill
• sv exit

• sv restart

• sv check (can be used to implement dependencies)

These tools communicate over a FIFO ./supervise/control

in the service directory.

8

runsvdir(8)

runsvdir(8) starts a runsv(8) process for each
subdirectory, or symlink to a directory, in the
services directory dir, up to a limit of 1000
subdirectories, and restarts a runsv(8) process if it
terminates.

9

Putting it all together

Wenowhave everythingwe need for service supervision.

You can use the mentioned parts on almost every Unix system
already. (It runs on Linux, *BSD,MacOS X and Solaris.) I highly
recommend it!

But we wanted to replace init(1), too.

10

runit(8)

• runit(8)must be run as pid 1.
• runit runs /etc/runit/1 and waits for it to terminate.
• runit runs /etc/runit/2, which should not return until system

shutdown.
• If runit is told to shutdown the system, or stage 2 returns, it

terminates stage 2 if it is running, and runs /etc/runit/3.
• If stage 3 returns, runit checks if the file /etc/runit/reboot

exists and has the execute by owner permission set. If so, the
system is rebooted, it’s halted otherwise.

• If runit receives a CONT signal and the file /etc/runit/stopit
exists and has the execute by owner permission set, runit is told
to shutdown the system.

11

The tools are there now.

But we don’t have the /etc/runit/{1,2,3} scripts yet to
actually do the stuff. (Nor do we have all the service
directories.)

This is the task fulfilled by the ignite project.

12

ignite

ignite is a set of shell scripts to boot an Arch installation with
runit.

It includes /etc/runit/{1,2,3} as well as service directories
for many popular services (53 currently).

/etc/runit/{1,3} were written after a close reading of Arch
initscripts-2012.05.1, backwhen thesewere simple bash scripts.

They support the rc.conf configuration file for system-wide
configuration that Arch used to have.

13

These scripts are pretty straight forward:

% wc -l /etc/runit/?

83 /etc/runit/1

40 /etc/runit/2

46 /etc/runit/3

169 total

14

How to boot Arch Linux? · /etc/runit/1
• Mount /proc, /sys, /run,
/dev, /dev/pts, /dev/shm

• Remount / read-only
• Enable Unicode for all Linux

consoles, and load console
fonts and fontmaps

• Load the console keymap
• Get the clock from the

hardware clock
• Run udev
• Turn on local networking

(interface lo)

• Set the hostname
• Deal with dmraid, btrfs,

LVM, cryptsetup
• fsck if needed or requested
• Remount / read-write
• Mount other filesystems
• Enable swap
• Set the time zone
• Seed the random number

generator
• Clear some files
• Save boot dmesg

15

What next? · /etc/runit/2

• Assemble list of services we want to run from rc.conf.

• Run /etc/rc.local, for one-time jobs (e.g. set some power
saving options).

• Exec runsvdir(8).

16

Shutting down Arch Linux? · /etc/runit/3
• Stop all services
• Run /etc/rc.local.shutdown

• Save the random number generator seed
• Quit udev
• Kill all processes still around
• Turn off swap
• Unmount everything but /
• Close all cryptdevices, LVM
• Remount / read-only
• Tell runit to halt or reboot

17

Sample services

#!/bin/sh

install -d -m 0755 -o root -g root /var/run/dovecot

exec dovecot -F

We include a pause(2)utility if there is nothing to supervise:

#!/bin/sh

/usr/sbin/alsactl restore

exec chpst -b alsa pause

Most services are easy to write.
18

ignite in practice

runit
|-runsvdir -P /run/runit/runsvdir/current...
| |-runsv dovecot
| | ‘-dovecot -F
| | |-anvil
| | |-imap
| | ‘-log
| |-runsv postfix
| | ‘-master -d
| | |-pickup -l -t unix -d -u
| | |-qmgr -l -t unix -d -u
| | ‘-tlsmgr -l -t unix -d -u
| |-runsv sshd
| | ‘-sshd -D
| |-runsv ntpd

19

| | ‘-ntpd -g -u ntp -n
| |-runsv crond
| | ‘-crond -n
| | ‘-crond -n
| | ‘-(run-parts)
| |-runsv wlan0-wpa
| | |-logger -t wpa_supplicant-
| | ‘-wpa_supplicant -i wlan0 -D nl80211,wext...
| |-runsv wlan0
| | ‘-dhcpcd -qLB -t 0 wlan0
| |-runsv eth0
| | ‘-dhcpcd -qLB -t 0 eth0
| |-runsv syslog-ng
| | ‘-syslog-ng -F
| ‘-runsv agetty-tty1
| ‘-agetty -8 -s 38400 --noclear tty1 linux
‘-udevd --daemon

20

ignite features: general

• Support for old-style rc.conf (snippet from my notebook):

TIMEZONE=”Europe/Berlin”

MODULES=(acpi_cpufreq coretemp pcrypt snd-pcm-oss

hdaps tp_smapi kvm-intel)

DAEMONS=(agetty-tty{1,2,3,4,5,6} syslog-ng smartd dkms

hdapsd alsa !laptop-mode eth0 wlan0 wlan0-wpa crond

ntpd acpid sshd postfix dovecot cpupower dbus mpd

unbound batt-led)

• Services for networking: DHCP and static configurations
• Pretty straight forward to write service scripts for most dæmons
• sysvinit feelalikes for halt(8), reboot(8), shutdown(8).

21

ignite features: robustness

• Interrupt support during boot: drop into a rescue shell in case
boot fails

• Single-usermode support with read-only / (amazingly hard these
days)

• Boot logging into dmesg kernel buffer

[34.630993] :: mount -o remount,rw /

[34.631160] EXT4-fs (dm-2): re-mounted. Opts: (null)

[34.633807] :: mount -a -t ”nosysfs,nonfs,nonfs4,nosmbfs,nocifs” -O no_netdev

[34.635186] EXT4-fs (sdb1): mounting ext2 file system using the ext4 subsystem

22

ignite features: boot time

• Faster than sysvinit, since runsvdir starts all services in parallel.
• Slightly slower than systemd in practice:

• need to wait for udev to settle completely
• enabling UTF-8 on all 64 consoles takes some time in shell
• runsv waits a second before it starts the service (could be

patched out)
• In general, I don’t think boot time is that important:
It’s fast enough.

23

ignite features: resource usage

• Small andmature code base (runitwith all tools is about 5kLOC):

% wc -l runit.c sv.c runsv.c runsvdir.c
346 runit.c
387 sv.c
607 runsv.c
286 runsvdir.c

• Very lightweight, thanks to statically linkedmusl binaries (x86_64):

text data bss dec hex filename
12320 224 424 12968 32a8 /sbin/runit
20044 224 888 21156 52a4 /sbin/runsv
17460 280 8904 26644 6814 /sbin/sv
32080 2156 672 34908 885c /sbin/init.sysv

881017 106924 2497 990438 f1ce6 /usr/lib/.../systemd

24

• Very low overhead (measured on a Raspberry Pi):

PID TIME MAJFL TRS DRS RSS %MEM COMMAND
1 0:02 33 735 3980 2488 1.1 /sbin/init
66 0:00 4 165 3294 1072 0.5 .../systemd-journald

PID TIME MAJFL TRS DRS RSS %MEM COMMAND
1 0:01 0 13 142 20 0.0 runit

253 0:00 2 21 162 40 0.0 runsvdir
267 0:00 0 21 142 32 0.0 runsv sshd
269 0:00 1 21 142 32 0.0 runsv crond
270 0:00 0 21 142 32 0.0 runsv eth0
272 0:00 0 21 142 32 0.0 runsv agetty-tty1

• Runs $here on about a dozen different machines (i686, x86_64,
arm) for various tasks (notebooks, desktops, wall-hung tablet,
print servers, NAS) with very similar setup.

• Generally stays out of your way.

25

Problems

• Some programs cannot not dæmonize (or make it tricky)
• Not all services are implemented (NFS)
• Some dependencies are hard/too general to describe
• Supervision of very early tasks

• udev is not supervised (yet?)
• want to run ntpdate early, but need network up already…

• Still using syslog-ng
• works, but complicates proper logging of shutdown
• the runit way is to use svlogd(8) (much work to adapt all

services)
• Arch defaults converge to systemd, not always reasonable (in-

creases setup cost)
26

Summary

runit provides a lightweight, flexible and high-quality init
system.

ignite shows that common Linux distributions can adopt runit
without too much effort.

I recommend using runit for a suckless Linux distribution.

27

How to get it

• http://smarden.org/runit/

• http://github.com/chneukirchen/ignite

• #ignite on irc.freenode.net

• packer –S ignite-git (read the manual first)

28

Questions?

29

