
Sublanguages
Encoding programming

paradigms in Ruby

Christian Neukirchen
Editor in Chief of Anarchaia

http://chneukirchen.org/talks

What is this talk about?

Ruby
C++ Visual BasicPHPJava

It’s not about inferior languages!

Instead…

• It’s about doing things in ways you didn’t
expect…

• …but doing them in Ruby

Overview

• What are sublanguages?

• sloop: prototype-oriented programming

• spawn: Erlang-style concurrency

• solve: logic programming

Sub-what?

• Sublanguages are like embedded
Domain-Specific-Languages (“DSLs”)…

• …just not Domain-Specific!

Sublanguages

• Embedded, general purpose “programming
languages”

• Solutions for solving general problems

• Can use the full power of Ruby

• Usable for real programs!

Self-made Restrictions

• A lot is possible…

• …but there are some things I’d rather
avoid:

• Modifying core classes

• Breaking code that used to work

• Being completely inefficient

Ruby-imposed
Restrictions

• Speed

• Not comparable with native
implementations

• Syntax “restricted” to Ruby

• Evaluation restricted to Ruby

• We (still?) have continuations, but I’d like
to avoid them because of the self-made
restrictions

Three sublanguages:
Techniques used

• sloop: prototype-oriented programming

• method_missing on steroids

• spawn: Erlang-style concurrency

• Core-class inheritance

• Making up object identities

• solve: logic programming

• Expression construction by operator overloading

• Goal-directed evaluation with blocks

sloop
• Abolish the class system!

• Build-your-own method dispatch

• Example:
Account = sloop {
 self.balance = 0

 def_deposit { |v| self.balance += v }
 def_withdraw { |v| self.balance -= v }

 def_inspect { “#(an account with $#{balance})” }
}

Example:

my_account = Account.clone

puts my_account.inspect
my_account.deposit 1000
puts my_account.inspect

#(an account with $0)
#(an account with $1000)

How it works

• Excessive use of method_missing

• If the name matches /^def_/

• Set the slot to a Sloop::Proc

• If the name matches /=$/

• Just set the slot

How it works, part 2

• Else…

• If the slot exists

• Retrieve it

• If it’s a Sloop::Proc, run it

• Else, return the value

• Else, try looking in the _parent slot

Pros
• Everything is possible

• A flexible mixin/“inheritance” scheme is
included

• Next stop: conditional traits?

• “If the balance is bigger than 1,000,000,
the object automatically turns into a
RichAccount”

• Despite the method_missings, pretty
safe to use

Cons

• Slower dispatch times (the classic Ruby
disease)

• It’s totally different compared to the Ruby
class system

Use when…

• You need to model complex relationships
(mainly business logic)

• You have lots of special-purpose objects
(few instances of a lot of classes)

• You want to prepare for your move to
Io (Ewww?) or Self (Zzzz?)

spawn

• Erlang-style concurrency for Ruby

• ThreadsProcesses send each other
messages

• No shared memory between threads

• Easier to program (no locking)

• Scales better

An example:
adder = spawn {
 sum = 0
 loop {
 recieve { |sender, msg, *args|
 case msg
 when :add then sum += args.first
 when :result then sender.reply sum
 end
 }
 }
}

10.times {
 spawn { |process| adder.send :add, rand(10) }
}
p adder.syncmsg(:result)

Implementation

• We inherit Spawn::Process from
Thread

• …and add a queue attribute

• …and some helpers to read and write
that queue

• Only single-process concurrency so far, but
should be easy to scale with help of DRb

• …or even a “proper” message queue

Synchronous messaging
• You can use syncmsg to send a message and wait

for a reply to it
• Usually done by passing a handle to the current

process
• But how can we tell that we really meant this

message?

• object_id of both processes is the same

• …so let’s wrap them with a ProcessWrapper
• it only forwards everything, but has an unique
object_id

Pros

• Easy to use, when you have the appropriate
mindset

• No more mutexes

• Helps designing for scalability

Cons
• Only uses Ruby’s threads so far

• Which, albeit “lightweight” still are huge in
comparison to Erlang’s (~40K vs. only 1K)

• …and occasionally flaky

• Please don’t use for emergency
telephony services!

• Look at Ruby’s implementation for
detail

Use when…

• You are looking for a more “natural” way to
do concurrency

• You want to write code that scales easily

• You think Ruby on Rails is a lot cooler than
ErlyWeb

solve
• Logic programming for Ruby

• Rudimentary constraint satisfaction

• Example:

• David is the son of John

• Jim is the son of David

• Steve is the son of Jim

• Nathan is the son of Steve

• Which are Nathan’s anchestors?

def parent?(a, b)
 ((a == “David”) & (b == “John”)) |
 ((a == “Jim”) & (b == “David”)) |
 ((a == “Steve”) & (b == “Jim”)) |
 ((a == “Nathan”) & (b == “Steve”))
end

def anchestor?(a, b)
 z = Solve::Variable.new # anonymous variable
 parent?(a, b) |
 parent?(a, z) & Then.do { anchestor?(z, b) }
end

child = Solve::Variable.new(:child)
anchestor = Solve::Variable.new(:anchestor)

solve((child == “Nathan”) &
 anchestor?(child, anchestor)
) { |result| p result }

Result:

{:child=>”Nathan”, :anchestor=>”Steve”}
{:child=>”Nathan”, :anchestor=>”Jim”,

:_1=>”Steve”}
{:child=>”Nathan”, :anchestor=>”David”,

:_1=>”Steve”, :_2=>”Jim”}
{:child=>”Nathan”, :anchestor=>”John”,

:_1=>”Steve”, :_2=>”Jim”, :_3=>”David”}

Creating predicates
from data structures

def parent?(a, b)
 Solve.forany({“David” => “John”,
 “Jim” => “David”,
 “Steve” => “Jim”,
 “Nathan” => “Steve”}) do
 |child, father|
 (a == child) & (b == father)
 end
end

def Solve.forany(enum, &block)
 enum.inject(Solve::False) { |a,e| a | block[e] }
end

HTF does that work?

• First, Desugaring:

• a | b ⇒ Or.new(a, b)

• a & b ⇒ And.new(a, b)

• ~a ⇒ Not.new(a)

• a == b ⇒ “Variable with expected value b”

Then…
• Solve tries to unify the expression

• A variable unifies if the value is unset

• Then it sets the expected value to the
given one

• …or if the value matches the expected
value

• All values are stored in a dynamically
scoped environment that’s passed around
implicitly

Logical operators

• And unifies if all subclauses unify

• Or unifies for every subclause that unifies

• Not unifies if the subclause doesn’t unify

• True always unifies

• False never unifies

What does unify mean?

• In solve, unify means “calls a block”

• The whole thing just calls a lot of blocks!

• Attribution for the idea: YieldProlog

http://yieldprolog.sourceforge.net/

(which lacks the sugar)

class Or
 def unify
 @elts.each { |e|
 e.unify { yield }
 }
 end
end

class And
 def unify
 @a.unify {
 @b.unify { yield }
 }
 end
end

class Not
 def unify
 succeed = false
 @expr.unify { succeed = true }
 unless succeed
 yield
 end
 end
end

Therefore…

• If we don’t yield, the “trial and error” stops

• The final yield calls the block given to
solve with the current environment

• unify is a kind of visitor for the expression
tree

Pros

• Elegant design

• Clever syntax

• Nice pattern

• Extensible (e.g. digit.oneof 0..9)

Cons
• Lots of method calls (yawn)

• Totally generic and unoptimized

• Anyone want to hook a constraint-solver
like Gecode into it?

• Recursive queries need to be protected
(with Then.do)

• Due to unadept precedence you may need
lots of parentheses (yay for Lisp)

• A bit difficult to debug

Use when…

• You need logic programming but don’t
know Prolog or can’t embed it

• (It’s non-trivial to use solve without
some knowledge of logic programming,
though.)

• You like debugging recursive programs (a
great way to learn ;-))

• The technique is useful for developing all
kinds of query languages (cf. Criteria)

Summary

• If your head smokes now, that’s alright

• But talking about trivial things would have
been a waste of time, no?

• When you’re writing a logic program in
Ruby, it doesn’t really look like Ruby
anymore…

Sublanguages!
• Enable multi-paradigm programming

• “A paradigm is a key model, pattern or method
(to achieve certain class of goals/objectives).”

— Wikipedia

• That means:

• We can express foreign paradigms in Ruby

Prototyped programming

Concurrency
Logic programming

Why?

• Ruby is very powerful…

• …but not too powerful

• That makes the language flexible enough,
but also recognizable enough

• Anti-Example: Lisp

• We still can leverage the full language

• That implies we can mix paradigms

Now you can…
write

concurrent

logic programs

that are developed in a

prototyped manner

(please don’t!)

Thanks for your
attention

• Slides: http://chneukirchen.org/talks

• Code: http://chneukirchen.org/repos/sublanguages

Thanks to: David Föll, Robert Retzbach and Alexander Kellett for reviewing the slides.
Verbatim copying is allowed as long as this message is preserved. Duplication is encouraged.

