
Rack also has been used for high-speed development of
small, but urgently needed web applications. Due to the
simplicity and convenient APIs and helpers provided, we
had working results quicker than with any other Ruby web
framework in existence.

7. A short excursion: Coset
Although Rack is pretty young, some Ruby web frameworks
already depend on Rack and use it as their main interface
(Section 3.3).

We also wrote an framework specifically for implement-
ing RESTful [20] Rack applications and services, called
Coset1.

Coset’s API is inspired by Camping [13], web.py [21]
and RESTlet [22] and features dispatching on URI tem-
plates [23] as well as support dealing with multiple content-
types. A simple time server could be written like this, to
show an example:

require ’coset’

class TimeServer < Coset
GET "/time{EXT}" do
now = Time.now
wants "text/html" do
res.write "<title>Current time</title>\n"
res.write "It’s now #{now}.\n"

end
wants "text/plain" do
res["Content-Type"] = "text/plain"
res.write now.to_s + "\n"

end
wants "application/json" do
res["Content-Type"] = "application/json"
res.write "{\"current_time\": \"#{now}\"}\n"

end
end

end

The special template {EXT} matches an file extension and
“fakes” the according content-type (useful for browsers or in
cases you cannot pass your own headers).

Now, we can test the time server (superfluous headers are
suppressed for reasons of length):

$ curl -i localhost:3333/time
HTTP/1.1 200 OK
Content-Type: text/html

<title>Current time</title>
It’s now Sun Nov 04 12:03:18 CET 2007.

1 Which is a really bad German mathematical pun: Coset can be translated
as Restklasse.

$ curl -i localhost:3333/time.txt
HTTP/1.1 200 OK
Content-Type: text/plain

Sun Nov 04 12:03:56 CET 2007

$ curl -i -H "Accept: application/json" \
localhost:3333/time

HTTP/1.1 200 OK
Content-Type: application/json

"current_time": "Sun Nov 04 12:05:14 CET 2007"

While Coset is not yet officially released due to limited
developer’s time, the Darcs head version [24] already runs
several small sites successfully.

Coset is by no means finished yet, and discussion about
future features as well as design and implementation details
is welcome.

8. Summary
We have shown how a minimal interface abstraction of
HTTP simplifies web development by allowing code reuse,
better testability and higher flexibility of combining code.

The Rack specification, in spite of it’s low version num-
ber, already satisfies the current needs of web developers and
specifies a suitable way to run web applications.

Abstracting HTTP into what essentially is a method ap-
plication enables us to use decades of functional program-
ming for building and combining code for the web.

Our implementation proves that this approach is fast and
stable enough to run business-critical web services without
restrictions in expressivity or performance, but with even
quicker turnaround times than with traditional frameworks,
since the convenient APIs built upon the core Rack specifi-
cation save developer’s valuable time.

Acknowledgments
Thanks go to all developers contributing to the Rack code
base and the project itself—an always current list is found in
the Rack source distribution.

I would like to especially thank Michael Fellinger with
whom I talked for hours pondering and improving the design
of Rack.

Thanks also go to Personifi for allowing me to test and
benchmark Rack on powerful servers with real world appli-
cations. Our results and development times speak for them-
selves.

Last, but not the least, I’d like to thank the WSGI team
for paving the way—they did the major work in solving
the fiddly design issues which appear now and then—and
especially the Paste [25] developers, whose project largely
influenced the design of the Rack utilities.

Finally, thanks to Horacio López a.k.a vruz, Johan Sørensen,
... for reviewing this paper.

5 2007/11/8


