
Dynamic Scope and
Context-oriented

Programming
Christian Neukirchen

Editor in Chief of Anarchaia

Euruko 2005

Overview

• Dynamic scope

• Context-oriented Programming

• Implementing ContextR

• “Surprise”

Chapter I
Dynamic Scope

Review:
Lexical Scope

def adder(n)
 v = 0
 lambda { v += n }
end

add_one = adder 1
p add_one.call
p add_one.call
p add_one.call

=> 1
=> 2
=> 3

lexical scope
closure

Comparision

Lexical Scope:

Variables are looked up in the binding they
were defined.

Dynamic Scope:

Variables are looked up dynamically, in
the current binding (not the defining
one).

x = 2 x = 3

Lexical lookup

def a; x = 1; b; print x; end
def b; x = 2; c; print x; end
def c; x = 3; print x; end

x = 1

3 2 1

amain b c

Bindings:

Stack:

Global lookup

def a; $x = 1; b; print $x; end
def b; $x = 2; c; print $x; end
def c; $x = 3; print $x; end

$x = 3

3 3 3

amain b c

Dynamic lookup

Dynamic.variable :x
def a
 Dynamic.let :x => 1 do
 b
 Dynamic.let :x => 2 do c end
 end
end

def b
 Dynamic.let :x => 3 do c end
 c
end

def c
 print Dynamic[:x]
end

3 1 2

:x = 1

:x = 3

Scope diagram

amain

b

c

:x = 2

c

c

Using Dynamic Scope

• Parametrization:

• STDIN, STDOUT (think ERb + puts)

• Passing objects around without explicit
mention

• Dissident, my DI container, stores the
currently active containers in a dynamic
variable

Using dynamic.rb
require 'dynamic'

Dynamic.variable :eur2usd_factor => 1.3068

def eur2usd(euro)
 euro * Dynamic.eur2usd_factor
end

p eur2usd(10) # => 13.068
p eur2usd(0.77) # => 1.006236

Dynamic.let :eur2usd_factor => 0.9267 do
 p eur2usd(10) # => 9.267
 p eur2usd(0.77) # => 0.713559
end

p eur2usd(10) # => 13.068

Implementation

• Dynamic variables are stored globally
accessible.

• Dynamic.let is roughly:
 old = Dynamic[variable]
 Dynamic[variable] = new
 yield
 Dynamic[variable] = old

• Using the Ruby stack to keep track of
previous definitions

Implementation

• Dynamic variables, not “real” dynamic
scope.

• Dynamic scope is easy to implement in C

• Local variable infrastructure can be
reused.

‣ Would make a good addition to future
Ruby versions. (Now, fight about a sigil!)

Chapter II
Context-oriented

Programming

The idea

• Imagine you can’t only dynamically scope
variables, but also methods.

Layering Methods

• Methods sometimes need to fulfill several
concerns:

• Logging

• Data validation

• Database handling (connecting,
transactions)

• …

wrap

• Methods have several “slices”:

• a “core”

• hooks to run before

• hooks to run after

• hooks to wrap the core

• Comparable to AOP

• More are imaginable, but not
implemented yet

wrap

Defining layered
methods

core

pre

pre

post

post

Ensure database connection
Transaction

Website Example

Debit

Validate input

Check credentials

Log as successful

Redirect user to homepage

Security

Web

Database

Logging

Web

In ContextR:

class Website
 layer :security
 layer :web
 layer :database
 layer :logging

 def debit; ...; end
end

In ContextR:

class Website
 security.pre :debit do
 check_credentials
 end
 web.pre :debit do
 validate_input
 end
end

In ContextR:
class Website
 database.wrap :debit do |n|
 connect_to_database
 n.call_next
 ensure
 close_database
 end
 database.wrap :debit do |n|
 transaction { n.call_next }
 end
end

In ContextR:

class Website
 logging.post :debit do |n|
 log "Debit successful: " <<
 n.return_value
 end
 web.post :debit do
 redirect_back_home
 end
end

Configuring the
Application

Development
ContextR.with_layers :web,
 :database, :logging do
 Website.new
end

Configuring the
Application

Production
ContextR.with_layers :web, :database,
 :security do...

Unit testing
ContextR.with_layers :mock_db do...

Comparision to AOP

• Some may know these ideas from “Aspect-
oriented Programming”…

• …but Context-oriented Programming is
more:

• The program can be reconfigured
completely at runtime.

Reconfiguration for
testing:

def test_logging
 ContextR.with_layers :logging do
 assert_logged ...
 end
end

ContextR.with_layers :mock_db do
 run_tests
end

More usages

• Layers also can be defined in Modules:

• Mix-in and ducktyping allow for
boundless extensibility

• Generic User Interfaces (Naked Objects
on steroids)

• …

Chapter III
Implementing

ContextR

Implementation

• ContextR was written in about four hours
this week.

• API inspired by ContextL, written by Pascal
Constanza (see references).

• 281 LoC + 171 LoC for dynamic variables.

• Proof-of-Concept, but not ugly.

Implementing
compound methods

• Compund methods are implemented using
“salami tactics”

• Each method gets split up into lots of
smaller methods

• A driver method figures which to call…

• …and what to do with the results.

Rough translation of
the Website example

def debit
 _debit_pre_00001_;_debit_pre_00002_
 _debit_wrap_00003_ {
 _debit_wrap_00004_ {
 r = _debit_core_00005_
 }
 }
 _debit_post_00006_;debit_post_00007_
 r
end

Implementation

• In reality, it does more:

• Check for active layers

• Keep track of arguments and return
values

• Allow for premature exits

• Fully dynamic, for now

Limitations

• Most severe limitation in Ruby <1.9

• Blocks can’t take blocks as arguments

• Blocks are used heavily in ContextR

• ContextR can’t pass blocks to slices

• No problem to do in Ruby >=1.9

Performance
of ContextR

• In one word: horrible.

• Method calls are up to 200x slower.

• You can stop laughing now.

• Optimization is possible…

Ideas for optimizing
ContextR

• “Compilation” of methods by generating a
string that calls the method slices

• Caching generated methods by active
contexts

• “Deoptimization”

• Redefining all affected methods on
context changes (heavily depends on the
way ContextR is used).

Ideas for optimizing
ContextR

• Hoping that YARV will be more efficient to
enable above techniques in an useful way.

• “It’s just method calls.”

Chapter IV
“Surprise, surprise”

Using ContextR
to implement…

Namespace
Selectors

I live “behind the moon”,
what are they?

• First introduced by Matz at RubyConf 2004

• To appear in Ruby 2.0

• Solving an “old” problem of Ruby

• “How can I change Ruby’s core methods
without breaking other code?”

ContextR Namespaces:
Declaration

class Array
 namespace :foo do
 def mungle
 zip(reverse).flatten
 end
 end
end

ContextR Namespaces:
Usage

class Foo
 namespace :foo

 def initialize
 p [1,2,3].mungle
 end
end

ContextR Namespaces:
Trying…

Foo.new

[1,2,3].mungle rescue p $!

[1, 3, 2, 2, 3, 1]

~> #<NoMethodError: undefined
method `mungle' for 123:Array
(only in :namespace_foo)>

Implementation of
ContextR Namespaces

• Each namespace gets a layer

• namespace(symbol) makes the default
layer wrap all methods with appropriate
with_layers calls

• using method_added

Implementation of
ContextR Namespaces

• namespace(symbol, &block) defines a
layer on method_added, activates it, and
class_evals the block to automatically
claim all the methods defined in the block.

• This probably qualifies as hack. :^)

Summary:

• ~680 LoC written in about six hours total

• Possible to implement ~97% (estimated) of
CLOS in pure Ruby

• Lacking const_defined, e.g.

• Not a single use of eval(string)

• Loads of fun

Question::Time ===
Time.now

References

•“Language Constructs for Context-oriented
Programming–An Overview of ContextL” by
Pascal Costanza and Robert Hirschfeld

http://p-cos.net/documents/contextl-overview.pdf

•“Dynamically Scoped Functions as the Essence of
AOP” by Pascal Costanza.

http://p-cos.net/documents/dynfun.pdf

•http://chneukirchen.org/blog/archive/2005/04/
dynamic-variables-in-ruby.html

Thanks to…

• Mauricio Fernández for telling me I already
was half-way done implementing
namespaces and helping me polishing the
slides.

• #ruby-lang on freenode for help in
deepest metaprogramming dungeons.

• You, following this talk until the end.

On the web:

http://chneukirchen.org/talks/euruko-2005

Outtakes:

History of
Dynamic Scope

• Used by default in old Lisps

• Lisp 1.5

• MacLisp

• Emacs Lisp

• Still provided and used by modern Lisps

• “special variables” (defvar)

Analysis
:x = 1

amain

b

c

Stack:

:x = 2

:x = 3

c

c

