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Preface

In order to transfer results from different branches of mathematics, a math-
ematician has work to do: definitions need to be compared, concepts mapped,
mismatches found, invariants kept. In this work, such a transfer happens on two
levels: first, we want to state, analyze and prove classical results of analysis in
a constructive setting; secondly, we need to formulate these results in the typed
calculus of Minlog.

The first transfer has largely been made by Errett Bishop and Douglas Bridges
in their seminal book “Constructive Analysis” [BB1985]. It is central to this thesis,
in which we analyze the objects and foundations used for their formulation of large
parts of classic analysis in a constructive way.

The second transfer, taking the proofs of “Constructive Analysis” and making
them work together with types, we need to do ourselves. Luckily, the types are
mostly unproblematic.

This thesis consists of five parts: first, we look at set theory and the lack thereof
in Minlog’s typed calculus; second, we research the different kinds of sets and their
uses in [BB1985]; third, we formally prove some theorems, focussing about finite
sets; fourth, we consider how measure theory can be formulated in a constructive
setting; fifth, we conclude our work.
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CHAPTER 1

Sets and Types

When formalizing classical mathematics, the most popular approach in the
last century has been to use set theory as a foundation. However, non-axiomatic
formulations of set theory such as the informal description by Cantor himself and
Frege’s naive set theory have quickly been shown to be inconsistent and liable to
paradoxes, e.g. Russell’s antinomy [Fre1893, Rus1902]. The axiomatisation of set
theory, for example by Zermelo and Fraenkel, is one approach to avoid these issues.

When we deal with constructive mathematics, and especially with computer
assisted proofs, a different foundation such as type theory is more viable. Type
theory was invented by Russell and popularized in his attempt—together with
Whitehead—to formulize all mathematical truth in Principia Mathematica. Later,
it was developed further by Church into the simply typed A-calculus. The Minlog
system [HS2011] uses a such a simply typed A-calculus, augmented with inductively
defined types.

In order to constructively prove theorems from set-heavy fields in classical
mathematics, such as measure theory, we thus need to shift paradigms: we need
to encode use of sets into inductive definitions and typed functions if we wish to
keep proofs similar. This is not possible in general, since “full” set theory is far
too powerful and non-constructive for such a mapping to exist. However, we will
see that one can heavily strip down set theory and still provide substitutes of most
constructs.

When Bishop wrote Foundations of Constructive Analysis [Bis1967], he was
deliberately frugal with details on foundations. While there have been foundations
for Constructive Analysis which use untyped A-calculi (e.g. [Fef1979)), it is well
possible to adapt the book to an A-calculus with inductively defined types.

Most readers versed with set theory as a foundation will know the representation
of ordered pairs as sets by Kuratowski:

(CL, b) = {av {CL, b}}

Such a set would not be allowed in our typed setting at all, because this
construction has no type: one element of the set is of type of a while the second is
of type set of type of a and b, whereas we require all elements of a sets to have the
same type.
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For the same reason, a set like this is not allowed:
2
1, =, m, true
1,27 true}

While we can regard the first three elements as real numbers, “true” is not
a real number; thus the elements don’t all have the same type, and the set is
not well-typed. All possible set elements we consider are therefore contained in a
universe. Classic constructions such as the compactification of the reals

R U {—00, 00}

are not allowed per se. Rather, we need to define a new type R which is a sum
type of a real number and the infinities, and then we consider “subsets of R”.

We even have to restrict sets further: only certain kinds of sets can be represented
with a type, for example finite sets. For such sets, we also can define sets-of-sets,
e.g. a finite set of finite sets of natural numbers. However, constructions like the
powerset are not allowed in general.

Mathematicians familiar with the classic use of set theory are often shocked
when they see how limited the constructive concepts of sets are. Yet, they are
powerful enough to go a long way.



CHAPTER 2

Formalizing set concepts in Constructive Analysis

1. Preliminaries

The inductive set definitions we work with are meant to be used in the context
of the Theory of Computable Functionals (TCF), a simply-typed lambda calculus
with parameterized types. Predicates and objects are defined inductively.

In its most general presentation, TCF looks like this [HS2010, pp. 114-115]

(A,B,C € F(?) are formula forms ranging over possibly zero predicate variables

—

Y = Yp,...,Y,. I, P e Preds(Y) are predicate forms and K; € Clx(Y) clause
forms):

Yir € F(Y), AeF BGFEY), A e F( Z
A— BeF(Y) vV, A e F(Y)

C e F(Y) P € Preds(Y)

{Z| C} € Preds(Y)’ PFreF(Y) '

Koo Ko €Ox(V) o
,ux(Ko, ey Kk—l) S Preds(Y)

AeF(Y) By,...,B,1€F
V(A = (V5 (By = X5,))pen = XT') € Clx(Y)

(n >0).

Every inductively defined predicate I := pux (Ko, ..., Kx_1) gives rise to these
axioms:

(INTRO) V(A = (V5 (B, — 15,))yen = IT)
(ELim) V(I = (Ki(I, P))i<x —° PX)
where

K;(I, P) := V(A = (Y5, (B, = I5,))yen —°
(Vg,(B, = P5,))yen = Pt

In the following, we assume a reasonable definition of the natural numbers,
a boolean data type and tuples, as well as a construction of whole and rational
numbers based upon them.



10 2. FORMALIZING SET CONCEPTS IN CONSTRUCTIVE ANALYSIS

A function f : A — B from a set A (its domain dmn A) to a set B (the
codomain cod B) is a finite routine for constructing f(a) from an object a € A
which satisfies f(a) = f(a’) whenever a,a’ € A and a = d'.

If f: A— Bandg: B — A are functions such that g(f(a)) = aand f(g(b)) =0
for all a € A,b € B, we say that f is bijective and call g its inverse (and vice versa).
We also write g = f~!. We say that A has a bijection to B.

2. Real numbers

Since real numbers are at the core of all analysis and there are several issues
arising in their constructive use, we will give them a closer look here.
Bishop/Bridges give a simple construction of the real numbers in [BB1985,
Section 2.2]: a real number is defined as a sequence (z,,) of rational numbers, such
that
! (m,n € N)
Then, two real numbers z := (z,), vy := (y,) are equal if

T, —yn] <2n7'  (nEN)

e

Minlog however, uses a slightly different exposition with a varying module,
explained in detail in [HS2007]: a real number is defined as a pair of a sequence
(x,,) of rational numbers together with a function M : N — N, such that:

T — 2| < 27F (m,n > M(k))
M(k) < M) (k<1).
With this definition, two real numbers x := (z,, M), y := (yn, N) are equal if

larwsny = bvaip <27° (K EN)

This definition is easier for proofs, especially when working with power series
operating on real numbers. The moduli will be omitted when they are clear or
irrelevant.

It is important to realize that (in)equality cannot always be shown for real
numbers: Let ng be 0 if k£ — 4 can be expressed as the sum of two primes, and 1
else. Then define G, = ny - 27%. It can be shown that G > 0, but showing whether
G > 0 or G = 0 requires proving the Goldbach conjecture.

A set with a finite routine to check whether any two elements is equal is called
a discrete set.

3. Sets and setoids
To quote [BB1985]:

... a set 1s defined by describing what must be done to construct
an element of the set, and what must be done to show that two
elements of the set are equal.
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Commonly, a set-with-equivalence is called a setoid, but we will usually regard
setoids with an implied equivalence and just call them sets. Note that two sets with
the same objects but different definitions of equality are considered fundamentally
different. (Take the real numbers, and then define all elements to be equal. The
resulting set will be finite.)

The well-known set operations such as intersection, union and set difference
are defined in intuitionistic ways: For two sets A and B, to construct an element
of the union AU B, we need to construct an element a € A or an element b € B.
To construct an element of the intersection A N B, we need to construct elements
a € A and b € B that are considered equal.

Subsets are defined in [BB1985] by inclusion maps, which are restrictions of
the identity on the superset: A subset A C B is a pair (A, ) consisting of a set
A and a function ¢ : A — B, called the inclusion map, such that for all a,a’ in A,
a = d' if and only if i(a) = i(d).

Relations like A C Band A = B (:= A C BAB C A) are shown by construction
of such inclusion maps.

4. Sets given by a formula

The perhaps most natural and general representation is the one given by a
property of its elements, as a formula Fg for elements of the universe:

S:={zeU|Fs(x)}

Set operations are easy to define by logical operators:

SUT :={xz|Fs(z)V Fr(z)}
SNT :={x|Fs(x) N Fr(z)}
S—T:={x|Fs(x) N—Fr(x)}

Set difference (and complementation S = U —S) have the usual problems related
to negation in constructive mathematics. Later, we will see set constructions where
we do not need negation for complementation.

Sets given by a formula are difficult to deal with in general. Thus, we will
take a closer look at set constructions and specialized set concepts that are more
appropriate for constructive mathematics.

5. Finite and subfinite sets

A set which has a bijection to a subset N,, = {0,...,n} C N up to some n € N
is called finite. That is, we need to construct two functions f, g : N — N such that

Vi<n (f(9(0)) = i A g(f (i) = 1)
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For some n € N, if there is a mapping from N,, = {0,...,n} C N up to n
onto a set S, the set is called subfinite. That is, we need to construct a function
f N — S such that Vses3i<, f(i) = s.

Note that these concepts inherently depend on the equality used. Given the
example from Section 2 how many elements does M := {0, G} have? We know
it is 2-subfinite because there cannot be more than two elements by construction,
but we cannot say it is finite, because we do now know the size of M.

Finite and subfinite sets are used for most “housekeeping” tasks in classical
proofs, e.g. for mesh points in the Riemann integral, or for the roots of polynomials.
In constructive proofs, such uses can be replaced with finite lists if subfiniteness is
enough (the length of the list then is the boundary), or if equality is decidable.

With these kinds of sets, we can decide membership and the subset relation
(if equality is decidable), and define set operations like union and intersection in
finitely many steps.

6. Countably infinite sets

A countably infinite set is a set for which there is a bijection to N.

The cardinality of these sets makes proofs more difficult. Membership and the
subset relation need to be proper predicates now and cannot be considered boolean
functions anymore. Likewise, set operations need careful definition to be useful in
proofs.

Within proofs, it is often enough to consider at most infinite sets, which can be
represented as series (which usually are represented as functions f: N — A).

7. Uncountable sets, Intervals

One step further, analysis is full of uncountable sets, which are often intervals
and thus rather manageable. We consider intervals as pairs of numbers for the
different endpoints and encoding which endpoints are open or closed. Membership
is then easy to define, and just requires comparability of the objects. Finite set
operations can be calculated.

Note that a conjectural simplification of intervals by reducing them to open
intervals and singleton objects {x} does not work: To show an element z is contained
in [0, 00) requires a proof of x < 0, but to show x € {0} U (0, c0) requires a proof
of x =0 orx<0.

8. Detachable sets

The more interesting representations for sets we will consider next use the
concept of characteristic functions.
A set A : o has a characteristic function x4 : ¢ — {0, 1}, such that:

(a) 1 ifac A
a) =
xa 0 ifadA
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Functions like these may be partial. In case they are total and finite, membership
is finitely decidable, and we call the sets described detachable sets.
Set operations on detachable sets are always well-defined:

XAUB = XA " XB
XAnB = XA T XB — XA~ XB
Also, we can define complements by subtraction:

xa=1l—xa
9. Complemented sets

Unfortunately, detachable sets are rare in most proofs. However, it is often
possible to combine sets with an inequality between elements, and we can then
define complemented sets:

A complemented set A C X is a pair (A!, A%) of subsets of X such that
x # y whenever v € A! and y € A°. Then there is a characteristic function

XAIA1UAO—>{O,1}
(a) = 1 ifxe Al
XAV =0 itz e A0

Now, we also can express complements and set difference of two complemented
sets, A and B:

A = (4°, AN
Xa-B = Xa- (1 —xB)

Countable unions and intersections of a sequence (A4,)%%, of complemented sets
can be defined by suprema and infima of sequences of their characteristic functions.

U=V,
n=0 n=0

where (\/ fn) (s) =sup{fn(s) :n € N} (partial)

It is important to realize that complemented sets make use of an affirmative
notion of inequality and not a negation of equality:
Consider the positive real numbers. By the definition above, (R, R™) is a

complemented set. However, we could define z € R} as: = € R{ leads to a
contradiction. Then there is no way of showing z € R™, if z € R} is contradictory.
But we can show that when z € R~ leads to a contradiction, z € R{ follows. (In
general, we can show that (z >y - F) -z <vy.)

Thus, R~ = R}, but R} # R~. But we want complementation to be stable.
We will return to complemented sets in the chapter about measure theory,
where they are very important.






CHAPTER 3

Proofs about sets

1. Coquand’s finite sets

Coquand proposed this inductive definition of finite sets [TC]: (The notation
Jf, here means: consider the function f changed such, that it returns y when given
x as an argument.)

(InitFin) Fin(\,false)
(GenFin) ViV (Fin fiee — Fin f)

A formalization of this, specialized to sets of natural numbers since we require
decidable equality, can be seen in listing [1}

In order to evaluate this definition, consider listing [2| as an example. It shows
the supposedly simple task of proving that a set with one element is equal. The
set is here represented by A,z = 5, that is, {5}.

THEOREM 1. The set {5} is finite.

PROOF. To prove finiteness of {5}, we apply the induction step (GenFin) once,
assuming 5 is in the set. Then we prove the resulting function, which now is false
for 5, always returns false and apply (InitFin). O

Even though, or rather because, this is a very simple example, we can see
the problems with this kind of definition quickly: first, we cannot apply GenFin
without already knowing an element in the set. If we want to talk about generic
sets, we are stuck here, and even with concrete representations, this requires much
insight into the function. Second, we have no way of constructing elements. Is this
even a valid set representation according to the requirements of Bishop/Bridges
as explained on page And, last, we only know we are done when we have
proven the “final” function to be constant false (which may not be possible), thus
we cannot estimate set size from above. Therefore, this definition doesn’t help in
defining subfinite sets.

15



16 3. PROOFS ABOUT SETS

(add-ids
(list (list "Fin" (make-arity (py "nat=>boole"))))
>("Fin([n] False)" "InitFin")
>("allnc f(all n(Fin([m] [if (m=n) False (f m)])
-> Fin(f)))" "GenFin"))

(set-goal (pf "Fin ([n]n=5)"))

LISTING 1. An inductive definition of finite sets

(add-var-name "f" "g" (py "nat=>boole"))
(add-global-assumption "Ext"
(pf "all f,g(all n f n=g n -> f eqd g)"))

(set-goal (pf "Fin ([n]n=5)"))
(use "GenFin" (pt "5"))
(ng) ; Fin([nO] [if (n0=5) False (n0=5)])
(simp (pf "[nO] [if (n0=5) False (n0=5)] eqd [nO]False"))
(use "InitFin")
(use "Ext")
(ng)
(assume "n")
(cases ’auto) ; [if (n=5) False (n=5)]=False
(assume "Useless")
(use "Truth-Axiom")
(assume "Useless")
(use "Truth-Axiom")
(save "SingletonFiveIsFinite")

LISTING 2. Proof that the set {5} is finite
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2. Proofs about bijections
The following theorem has been taken from an exercise in [RMFRWR1988].

THEOREM 2. Show that a function is a bijection if and only if it is one-to-one
and onto.
The terms are defined as:
one-to-one: a; = ay if f(a1) = f(ay).
onto: For each b € B there exists a € A such that f(a) =b
bijection: A function g exists such that g(f(z)) = x and f(g(y)) =y for
all x,y.

ProoOF. We prove both directions seperately. Listing |3| shows the first part of
the proof, going from a bijection to a one-to-one and onto function. One-to-one
results from injectivity of g o f = id. Onto is trivial by evaluating the inverse
function.

To prove the existence of the inverse function, we need to assume an “axiom
of choice” V,3,(f(y) = x) = 3,Vo(x = f(g(z))). Then, for any element in the
domain of f we know existence of an inverse element and can construct the inverse
function. U
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(add-var-name "f" "g" (py "nat=>nat"))
(add-var-name "x" "y" (py "nat"))

;; bijection => one-to-one and onto

(set-goal (pf "all f,g((all x g(f x) =x) > (all y f(gy) =y)
-> all x1, x2 (f x1 = f x2 > x1 = x2)
& all y (ex x (f x = y)))™)

(assume llfll I|gl| |lf_bijll ||g_bijl|)
(split)

(assume "x1" "x2" "f xi=f x2")

(simp (pf "g(f x1)=g(f x2) -> x1=x2"))
(use "Truth-Axiom")

(simp (pf "f x1 = f x2"))

(use "Truth-Axiom")
(use "f x1=f x2")
(simp (pf "g(f x1)
(simp (pf "g(f x2)
(assume "x1=x2")
(use "x1=x2")

(use "f-bij")

(use "f-bij")

x1"))
x2"))

(assume "y")

(ex-intro (pt "g(y)"))
(use "g-bij")

(save "6a")

LisTING 3. First part of theorem 2
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(add-global-assumption "AC"
(pf "all f(all x ex y £(y) = x > ex g all x x = £(g x))"))

;; one-to-one and onto => bijection
(set-goal (pf "all f(all x1, x2 (f x1 = f x2 -> x1 = x2) ->
all yexx fx =y —>
ex g (all x g(f x) = x
& all y f(g y) = y))")

(assume "f" "f-one-to-one" "f-onto")

(assert (pf "ex g all x x = f(g x)"))
(use "AC")
(use "f-onto")

(assume "g-exist")

(by-assume-with "g-exist" "g" "g-inv")
(ex-intro (pt "g"))

(split)

(assume "x")

(use "Nat=Symm")
(use "f-one-to-one")
(use "g-inv")

(assume "x")
(use "Nat=Symm")

(use "g-inv")

(save "6b")

LISTING 4. Second part of theorem 2
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3. A characterization of finite sets
Significantly more work requires the following theorem:
THEOREM 3. On a finite set every injective function is surjective.

PrROOF. We represent finite sets as functions f : N — N with the property
Vo(z <n— f(xz) <n) for a set with n elements.
This is how the proof works (proof idea and outline by Prof. Schwichtenberg):

Induction on the number n of elements.
Base. Trivial.
Step. (1) Assume f(n) < n.
Let g map {0,...,n} without f(n) onto {0,...,n — 1}, mapping i < f(n)
to itself and ¢ > f(n) to ¢ — 1. Let h be its inverse.
Let £ <n+ 1. We show that k is an f-value.
If k = f(n) we are done.
Let k # fn.
Case k < f(n). By IH for g o f and k we have i such that
g(f(i)) = k, hence f(i) = k (since g is the identity below f(n)).
Case f(n) < k. Then f(n) < k since k # f(n). Hence k — 1 <n
and k —1=g(k). By IH for go f and k — 1 we have an i
such that g(f(i)) = k — 1, hence g(f(i)) = g(k),
hence h(g(f(i))) = h(g(k)). But h o g is the identity,
therefore f(i) = k.
(2) Assume f(n) = n. Use the IH.

You can find the full proof, formalized by me in Minlog, in Appendix[A] O



CHAPTER 4

Constructive integration theory

1. The Riemann integral

In [BB1985, Chapter 2.6] define the notion of integral for continuous functions
on compact integrals [BB1985, p.51] by a construction equivalent to the classic
formulation of the Riemann integral:

n—1

b _
/f(a:)da:: b;a;f(aJrz’b;a)

(This is the original formulation by Riemann and not the often taught—and
equivalent—Darboux integral with upper and lower sums.)

The formulation makes use of proper intervals [a,b] and finite partitions thereof,
which are regarded as finite sequences of real numbers. There’s also the concept of
mesh width, using the maximum of a finite set:

mesh P :=max{a;;; —a;:0<i<n-—1}

This of course can be defined recursively by induction on n.

There is one more operation being used in the proof of [BB1985, Theorem 2.6.3],
namely “Let z € [ck, cpr1] (0 <k <7 —1)" with no further requirements on z,
thus we can set, e.g. z, = %(ck + Cpi1)-

Therefore, the simple concept of proper intervals is enough to support this
elementary definition of integral.

In most proofs about the Riemann Integral, one will choose a common increment
for all meshes involved and doesn’t need to use sets at all, but simply multiples of
the common increment.

2. The Daniell integral

Most of Chapter 6 of [BB1985] deals with an constructive definition of integral
as by Daniell, which is equivalent to the Lebesgue integral. The advantage of this
approach—especially in the light of thorough revision of these chapters compared
to [Bis1967]—is that the concept of measurable set and integrable set can be defined
in terms of their characteristic functions.

In contrast, [Bis1967] defined Borel sets which, all taken together, form the well-
known concept of a o-algebra. This is problematic because they require ordinals:

21
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the new approach in [BB1985] due to [BC1972] can be based solely on Heyting
Arithmetic, as by [Fef1997, p.14].

To the mathematician familiar with classic formulations of measure theory,
e.g. [HB2001], the Bishop/Bridges formulation seems a bit “backward”, since
measurable sets are defined by measurable characteristic functions, which are
defined by integrable sets, which are defined by integrable functions. However, the
elegant definition of the Daniell integral compensates for this.

3. Integration spaces

An integration space is a triple (X, L, I) of a nonvoid-set X with an inequality
(giving rise to complemented sets), a subset L of the strongly extensional partial
functions from X to R, and a function I of L into R subject to conditions (classically)
equivalent to the Daniell axioms.

The requirements for L are:

e Functions in L must be closed under linear combinations, taking the
absolute value, and being clipped below 1.

e Existence of an explicit function p in L with I(p) = 1.

e Given convergence of a sequence of non-negative functions ( f,, ),en, together
with > I (fn) < f(n), there is an x € X with ) _ fn(7) convergent
and S ful2) < f(2)

e Given f € L, lim, oo I(f An) =1(n) as well as lim,,_,o I(|f| An~1) =0.
(A is the minimum of two functions.)

The following proofs use countable unions of domains of functions f,, in L in
order to prove that (J, .y dmn f, is nonvoid [BB1985, Proposition 6.1.6]; this is
grounded on the fact that if it were, ) _ fo(2) would not converge because it
would not be defined.

The text goes on with an example of an integration space, namely positive
measures on a locally compact space [BB1985, Theorem 6.1.10]. (A locally compact
space is a set with a metric, where every bounded subset is contained in a compact
subset; we can regard it as countable union of compact spheres (= closed intervals
on R) here).

There are two common examples of measures, namely the counting measure on
Z, and the Lebesgue measure on R. The counting measure | fdp, is unproblematic,
since it easily can be calculated on the finite domain of f. The Lebesgue measure
is defined here by the Riemann integral of the test function.

4. Complete Extension of an Integral

[BB1985, Section 6.2] defines a few important terms for the rest of the discussion;
namely, what an integrable function is (a series of function in L that converges, and
the series of integrals of their absolute values converge, too)—and I is extended
to be defined on them. Also, full sets are defined as subsets of X which are a
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superset of the domain of an integrable function, and they are shown to be closed
on countable intersection. [BB1985, Proposition 6.2.9] shows then, that if any f
in F(X) and integrable function g are equal on a full set, f is integrable and the
integrals agree, too. Thus the reasoning “what happens outside a full set may be
ignored” [BB1985, p.225]. This definition of equality is also used to make the class
L, of integrable functions a set.

The rest of the chapter defines a metric on L; and shows that (X, Ly, 1) is an
integration space, the completely extended integration space.

5. Integrable sets

In [BB1985, Section 6.3], integrable sets are defined via their characteristic
function x4 : A' U A2 — {0,1} on a complemented set A; it is called integrable
when x4 is an integrable function. Then measure p(A) := I(x4) is defined on these
sets.

A few properties of sets of measure 0 follow, and it is shown that integrable
sets are closed under A (intersection) and V (union) as well as — (set difference).
These operations are then extended to sequences of integrable sets, given that these
sequences already converge in measure, that is:

k
,ggggou<\_/lAk> = eR = p(\/A) =2

Two more useful propositions follow, showing:

A1D A} D - and lim pu(A,) =A€R = pu(A,) =2
n—oo

ZN(A,L) converges = ,u(\/ A,) < Zu(An)

These propositions are useful tools for dealing with countably infinite operations
on integrable sets.

6. Measurable sets

The exposition of measure theory in [BB1985] continues with three sections
of delicate content that we will skip since they are too technical and would go
beyond the scope of this thesis. Essentially, they define a theory of “profiles”,
which are needed to construct sufficiently many integrable sets. Using profiles, we
can show for example that for all except countably many ¢, the complemented
sets (f > t) := ({x € X|f(x) > t}) and (f > t) are integrable and have the
same measure. The interested reader is highly encouraged to read these sections in
parallel with [BC1972], where the ideas come across a bit more clearly.

With a completely extended integral I on a set X, we can now define measurable
functions, which can be approximated arbitrarily close by integrable functions.
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Likewise, a measurable set is a complemented set whose characteristic function is
measurable.

All taken together, we now have defined and constructed measurable sets
starting from the Daniell integral.

7. Set representations in constructive measure theory

In this chapter, many different kinds of sets where mentioned: measureable sets,
integrable sets, full sets. They all reside in X, the non-void set with inequality, that
is the foundation of the integration space. Essentially, we based whole measure and
integration theory on complemented sets, which “merely” are (partial) characteristic
functions. The Theory of Computable Functions works well for such functions, but
it is hard to gain computational value from them.



CHAPTER 5

Conclusions

We have shown that the ideas and proofs in [BB1985] can be implemented in a
typed, inductive setting. Many kinds of sets arising in constructive analysis can be
represented as functions or inductive data types while keeping their characteristic
properties.

Since most proofs are kept very abstract, varying implementations of sets can
be used while keeping the proof ideas the same.

In chapter |3| we have analyzed two different representations of finite sets, and
formalized three proofs of trivial to moderate difficulty and computer-checked them.

In chapter 4| we summarized the construction of measure and integration theory
as in [BB1985] and saw it is centered around the concept of complemented sets, for
which characteristic functions are a natural representation.

Due to the limited scope of this Bachelor thesis, many topics where closer
investigation should prove fruitful remain: formalization of the chapter on measure
theory in [BB1985] is a major task, but can be done in steps. Another task is
to come up with set representations that have more computational value, and to
investigate which programs can be extracted from various proofs. One possible
experiment would be to base the characteristic functions involved on concrete
inductively defined data types and try to gain computational content in this way.

All together, there are many applications of these foundations in mathematics:
from theoretic benefits such as proving theorems in stochastic theory and financial
mathematics to practial applications such as the verification of numerical algorithms,
generation of algorithms operating on stream representations of real numbers, and
actual calculation of integrals.
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APPENDIX A

On a finite set every injective function is surjective

This is the full proof of Theorem [3| on page 20 Due to its length, the output of
(check-and-display-proof) can be found on the included CD-ROM.

(add-var-name "f" "g" "h" (py "nat=>nat"))
(add-var-name "X" nyn "i" (py "nat"))

;; Lemmata

(set-goal "all n1,n2(0<nl -> ni<n2 -> Pred ni<Pred n2)")
(cases)

(assume "n2" "Absurd" "nvm")

(use "Efq")

(use "Absurd")

(assume "ni")

(cases)
(assume "nvm" "Absurd")
(use "Efq")

(use "Absurd")
(assume "n2")
(ng)
(assume "Truth" "ni<n2")
(use "ni1<n2")
(save "NatLtMonPred")

(set-goal "all n1,n2(nl<n2 -> ni<=Pred n2)")
(assume "ni")

(cases)
(assume "Absurd")
(use "Efq")

(use "Absurd")

(assume "n2" "ni<Succ n2")
(use "NatLtSuccToLe")

(use "n1<Succ n2")
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(save "NatLtToLePred")

(set-goal "all nl,n2(ni1<Succ n2 -> nl<Succ(Succ n2))")
(cases)

(assume "n2" "Useless")

(use "Truth-Axiom")

(assume "ni1")

(ng #t)

(assume "n2" "ni<n2")

(use "NatLtLtSuccTrans" (pt "n2"))

(use "ni<n2")

(use "NatSuccLeToLt")

(use "Truth-Axiom")

(save "nl1<Succ n2 -> nl<Succ(Succ n2)")

(set-goal "all x,y(x<Succ y -> (x=y -> F) -> x<y)")
(ind)
(cases)
(assume "Truth" "Absurd")
(use "Absurd")
(use "Truth-Axiom")
(assume "y" "Useless" "Useless2")
(use "Truth-Axiom")
(assume "x" "IH")

(ng #t)

(cases)

(assume "Absurd" "Useless")
(use "Efq")

(use "Absurd")

(assume "y")

(ng #t)

(use "IH")

(save "x<Succ y -> (x=y -> F) -> x<y")

;55 Main part of proof:
;5 On a finite set every injective function is surjective.
(set-goal (pf "all n,f(

all x (x<n -=> f x < n) —>

all x,y (x<y => y<n -> f x=f y -> F) ->

all x (x<n > exy (y<n & £y = x)))"))



A. ON A FINITE SET EVERY INJECTIVE FUNCTION IS SURJECTIVE 29

; 3, Induction on the number n of elements.
(ind)

;; Base

(assume "f" "finite" "f-inj" "x" "Absurd")
(use "Efq")

(use "Absurd")

;; Step
(assume |ln|| IIIHII llfll Ilfinitell llf_inj ll)
(assume "x" "x<Succ n")

;;; (1) Assume f n<n.

(use "NatLtSuccCases" (pt "n") (pt "f n"))
(use "finite")
(use "Truth-Axiom")

(assume "f n<n")

;;; Let g map O...,n without f n onto 0...n-1, mapping i<f n to itself
;;; and i>f n to i-1. Let h be its inverse.

(assert (pf "ex g all i g i = [if (i<f n) i (E--1I")
(ex-intro (pt "[i][if (i<f n) i G--1)I™))

(assume "i")

(use "Truth-Axiom")

(assume "g-exp-hyp")

(by—assume ug_eXp_hypn ugu ug_propu)

(assert (pf "ex h all i h i = [if (i<f n) i (i+1)]1"))
(ex-intro (pt "[il[if (i<f n) i (A+1)1"))

(assume "i")

(use "Truth-Axiom")

(assume "h-exp-hyp")

(by-assume "h-exp-hyp" "h" "h-prop")

;; gof correct
(assert (pf "all x (x<n -> g(f x) < n)"))
(cases (pt "n"))

(assume "n=0" "y" "Absurd")
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(use "Efq")

(use "Absurd")

(assume "n0" "n=Succ n0" "y" "y<Succ n0")
(cases (pt "f y=0"))

(assume "f y=0")

(simp "f y=0")

(simp "g-prop")

(ng #t)

(use "Truth-Axiom")

(assume "f y=0 -> F")

(simp "g-prop")

(cases (pt "f y<f n"))

(assume "f y<f n")

(ng #t)

(use "NatLtTrans" (pt "f n"))
(use "f y<f n")

(simp (pf "Succ nO=n"))

(use "f n<n")

(use "Nat=Symm")

(use "n=Succ n0")

(assume "f y<f n -> F")

(ng #t)

(assert (pf "Succ nO=Pred(Succ n)"))
(ng #t)

(use "Nat=Symm")

(use "n=Succ n0")

(assume "Succ nO=Pred(Succ n)")
(simp "Succ nO=Pred(Succ n)")
(use "NatLtMonPred")

(cases (pt "f y"))

(assume "f y=0")

(use "Efq")
(use "f y=0 -> F")
(use "f y=0")

(assume "n2" "Useless")

(use "Truth-Axiom")

(use "finite")

(simp (pf "n=Succ n0"))

(use "nl1<Succ n2 -> nil<Succ(Succ n2)")
(use "y<Succ n0")

(use "n=Succ n0O")

(assume "gof-correct")
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;; hog id except for i=f n

(assert (pf "all x ((x = f n -> F) -> higx))=x)"))
(assume "y" "y=f n -> F")

(simp "g-prop")

(cases (pt "y<f n"))

(assume "y<f n")

(ng #t)

(simp "h-prop")

(simp "y<f n")

(use "Truth-Axiom")

(assume "y<f n -> F")
(ng #t)
(assert (pf "f n<y"))

(use "NatNotLeToLt")

(assume "y<=f n")

(use "NatLeCases" (pt "f n") (pt "y"))

(use "y<=f n")

(use "y<f n -> F")

(use "y=f n -> F")

(assume "f n<y")
(simp "h-prop")
(assert (pf "Pred y<f n -> F"))

(assume "Pred y<f n")

(assert (pf "Pred y<Pred y"))
(use "NatLtLeTrans" (pt "f n"))
(use "Pred y<f n")

(use "NatLtToLePred")
(use "f n<y")

(assume "Absurd")

(use "Absurd")

(assume "Pred y<f n -> F")
(simp "Pred y<f n -> F")
(ng #t)

(cases (pt "y"))

(assume "y=0")

(use "Efq")

(simphyp-with-to "f n<y" "y=0" "Absurd")

(use "Absurd")

(assume "yO" "Useless")
(use "Truth-Axiom")
(assume "hog-id")
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;; gof injective
(assert (pf "all x,y(x<y —> y<n —> g(f x) = g(f y) —> F)"))
(assume "x2" "y2" "x2<y2" "y2<n")
(assert (pf "h(g(f y2))=f y2"))
(use "hog-id")
(use "f-inj")
(use "y2<n")
(use "Truth-Axiom")
(assume "h(g(f y2))=f y2")
(assume "g(f x2)=g(f y2)")
(use "f-inj" (pt "x2") (pt "y2"))
(use "x2<y2")
(use "NatLtTrans" (pt "n"))
(use "y2<n")
(use "Truth-Axiom")
(simp n<_|| llh(g(f y2))=f y2||)
(assert (pf "h(g(f x2))=f x2"))
(use "hog-id")
(use "f-inj")
(use "NatLtTrans" (pt "y2"))
(use "x2<y2")
(use "y2<n")
(use "Truth-Axiom")
(assume "h(g(f x2))=f x2")
(simp "<-" "h(g(f x2))=f x2")
(assert (pf "all x,y(x=y -> h x=h y)"))
(assume "x3" "y3" "x3=y3")
(simp "x3=y3")
(use "Truth-Axiom")
(assume "x=y -> h x=h y")
(simp "x=y -> h x=h y")
(use "Truth-Axiom")
(use "g(f x2)=g(f y2)")
(assume "gof-inj")

55, Let x<n+1. We show that x is an f-value.
;5 If x=f n we are done.

(cases (pt "x=f n"))
(assume "x=f n")
(ex-intro (pt "n"))
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(split)

(use "Truth-Axiom")
(use "Nat=Symm")
(use "x=f n")

;;; Let x != f n.

(assume "x=f n -> F")

(cases (pt "x<f n"))

(assume "x<f n")

;;; Case x<f n.

;5; By IH for gof and x we have i such that g(f i)=x,

;;; hence f i=x (since g is the identity below f n).

(assert (pf "ex y(y<n & ([ylg(f y))y=x)"))

(use "IH")
(assume "x2" "x2<n")
(ng #t)

(use "gof-correct")

(use "x2<n")

(ng #t)

(use "gof-inj")

(use "NatLtTrans" (pt "f n"))
(use "x<f n")

(use "f n<n")

(ng #t)

(assume "ex-g(f y)=x"

(by-assume "ex-g(f y)=x" "y" "y-prop")
(inst-with-to "y-prop" ’left "y<n")
(inst-with-to "y-prop" ’right "g(f y)=x")
(drop "y-prop")

(ex-intro (pt "y"))

(split)

(use "NatLtTrans" (pt "n"))

(use "y<n")

(use "Truth-Axiom")

(assert (pf "h(g(f y))=f y"))
(use "hog-id")
(use "f-inj")
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(use ||y<nn)

(use "Truth-Axiom")
(assume "h(g(f y))=f y")
(Simp ng—n "h(g(f y))=f yu)

(assert (pf "all x,y(x=y -> h x=h y)"))
(assume |IX3II |ly3|l “X3=y3")

(simp "x3=y3")

(use "Truth-Axiom")

(assume "x=y -> h x=h y")

(simp (pf "x=h(x)"))

(use "x=y -> h x=h y")
(use "g(f y)=x"

(simp "h-prop")
(simp "x<f n")
(use "Truth-Axiom")

5, Case f n<=x.
;5; Then f n<x since x != f n. Hence x-1<n and x-1=g x.

(assume "x<f n -> F")

(assert (pf "f n<=x"))

(use "NatNotLtToLe")

(use "x<f n -> F")

(assume "f n<=x")

(use "NatLeCases" (pt "x") (pt "f n"))
(use "f n<=x")

(assume "f n<x")

(assert (pf "Pred x<n"))

(simp (pf "n=Pred(Succ n)"))
(use "NatLtMonPred")

(use "NatLeLtTrans" (pt "f n"))
(use "Truth-Axiom")

(use "f n<x")

(use "x<Succ n")

(use "Truth-Axiom")

(assume "Pred x<n")

(assert (pf "g x=Pred x"))

(simp "g-prop")

(simp "x<f n -> F")
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(use "Truth-Axiom")
(assume "g x=Pred x")

;;; By IH for gof and x-1 we have an i such that g(f i)=x-1,
;;; hence g(f i)=g x, hence h(g(f i))=h(g x).
;;; But hog is the identity, therefore f i=x.

(assert (pf "ex y(y<n & ([ylg(f y))y=Pred x)"))

(use "IH")
(assume "x2" "x2<n")
(ng #t)

(use "gof-correct")

(use "x2<n")

(ng #t)

(assume "X2" |ly2|l ”X2<y2")
(use "gof-inj")

(use "x2<y2")

(use "Pred x<n")

(ng #t)

(assume "ex-g(f y)=Pred x")

(by-assume "ex-g(f y)=Pred x" "y" "y-prop")
(inst-with-to "y-prop" ’left "y<n")
(inst-with-to "y-prop" ’right "g(f y)=Pred x")
(drop "y-prop")

(ex-intro (pt "y"))

(split)

(use "NatLtTrans" (pt "n"))

(use "y<n")

(use "Truth-Axiom")

(assert (pf "g(f y)=g x"))

(simp "g(f y)=Pred x")

(simp "g-prop")

(simp "x<f n -> F")

(use "Truth-Axiom")

(assume "g(f y)=g x")

(assert (pf "h(g(f y))=h(g x)"))
(simp "g(f y)=g x")

(use "Truth-Axiom")

(simp "hOg_id" (pt "f yu) (pt "X"))
(assume "f y=h(g x)")

(use "Nat=Trans" (pt "h(g x)"))
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(use "f y=h(g x)")
(use "hog-id")
(assume "x=f n")
(use "x=f n -> F")
(use "x=f n")

(use "f-inj")

(USG uy<nn)

(use "Truth-Axiom")

(assume "f n=x")
(ex-intro (pt "n"))
(split)

(use "Truth-Axiom")
(use "f n=x")

;33 (2) Assume f n=n. Use the IH.

(assume "f n=n")
(use "NatLtSuccCases" (pt "n") (pt "x"))
(use "x<Succ n")
(assume "x<n")
(assert (pf "ex y(y<n & f y=x)"))
(use "IH")
(assume "x2" "x2<n")
(assert (pf "f x2<Succ n"))
(use "finite")
(use "NatLtTrans" (pt "n"))
(use "x2<n")
(use "Truth-Axiom")
(assume "f x2<Succ n")
(assert (pf "f x2=n -> F"))
(simp ng—n "f n=nn)
(use "f-inj")
(use "x2<n")
(use "Truth-Axiom")
(assume "f x2=n -> F")
(use "x<Succ y -> (x=y -> F) -> x<y")
(use "f x2<Succ n")
(use "f x2=n -> F")
(assume "X2" ny2u HX2<y2u ny2<nu)
(use "f-inj")
(use "x2<y2")
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(use "NatLtTrans" (pt "n"))

(use "y2<n")

(use "Truth-Axiom")

(use "x<n")

(assume "ex-f y=x")

(by-assume "ex-f y=x" "y" "y-prop")
(ex-intro (pt "y"))

(inst-with-to "y-prop" ’left "y<n")
(inst-with-to "y-prop" ’right "f y=x")
(drop "y-prop")

(split)

(use "NatLtTrans" (pt "n"))

(use "y<l’l" )

(use "Truth-Axiom")

(use "f y=x")

(assume "x=n"
(ex-intro (pt "x"))
(split)

(use "x<Succ n")
(simp "x=n"

(use "f n=n"

(save "fin-inj-surj")
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